ЛИТЕРАТУРА
1. Классификация клинических форм бронхолегочных заболеваний у детей. М. : Российское респираторное общество, 2009. 18 с.
2. URL: http://www.cdc.gov/genomics/hugenet/
3. Bandari V., Bizzaro M.J., Shetty A. et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins // Pediatrics. 2006. Vol. 117. P. 1901-1906.
4. Pascal M.L., Pham C., Jang K.L. Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health // Pediatrics. 2008. Vol. 122, N 3. P. 479-485.
5. Фрейдин М.Б., Брагина Е.Ю., Огородова Л.М. Генетика атопии: современное состояние // Вестн. ВОГиС. 2006. № 10. С. 492-503.
6. Генетика бронхолегочных заболеваний / под ред. В.П. Пузырева, Л.М. Огородовой. (Серия монографий Российского респираторного общества, гл. ред. Чучалин А.Г.). М. : Атмосфера, 2010. 160 с.
7. Elhawary N.A., Tayeb M.T., Abdel-Ghafar S. et al. TNF-238 polymorphism may predict bronchopulmonary dysplasia among preterm infants in the Egyptian population // Pediatr. Pulmonol. 2013. Vol. 48, N 7. P. 699-706.
8. Bokodi G., Derzbach L., Banyasz I. et al. Association of interferon gamma T+874A and interleukin 12 p40 promoter CTCTAA/GC polymorphism with the need for respiratory support and perinatal complications in low birthweight neonates // Arch. Dis. Child. Fetal Neonatal Ed. 2007. Vol. 92, N 1. P. 25-29.
9. Kwinta P., Miroslaw B.M., Zofia M. et al. Genetic risk factors of bronchopulmonary dysplasia // Pediatr. Res. 2008. Vol. 64, N 6. P. 682-688.
10. Fujioka K., Shibata A., Yokota T. Association of a vascular endothelial growth factor polymorphism with the development of bronchopulmonary dysplasia in Japanese premature newborns // Sci. Rep. 2014. Vol. 4, N 4459. P. 1-5.
11. Cakmak B.C., Calkavur S., Ozkinay F. et al. Association between bronchopulmonary dysplasia and MBL2 and IL1-RN polymorphisms // Pediatr. Int. (Official Journal of the Japan Pediatric Society). 2012. Vol. 54, N 6. P. 863-868.
12. Floros J., Londono D., Gordon D. et al. IL-18R1 and IL-18RAP SNPs may be associated with bronchopulmonary dysplasia in African-American infants // Pediatr. Res. 2012. Vol. 71, N 1. P. 107-114.
13. Rezvani M., Wilde J., Vitt P. et al. Association of a FGFR-4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress // Dis. Markers. 2013. Vol. 35, N 6. P. 633-640.
14. Wang X., Li W., Liu W. et al. GSTM1 and GSTT1 gene polymorphisms as major risk factors for bronchopulmonary dysplasia in a Chinese Han population // Gene. 2013. Vol. 533, N 1. P. 48-51.
15. Lavoie P.M., Ladd M., Hirschfeld A.F. et al. Influence of common non-synonymous toll-like receptor 4 polymorphisms on bronchopulmonary dysplasia and prematurity in human infants // PLoS One. 2012. Vol. 7, N 2. P. 1-6.
16. Winters A.H., Levan T.D., Vogel S.N. et al. Single nucleotide polymorphism in toll-like receptor 6 is associated with a decreased risk for ureaplasma respiratory tract colonization and bronchopulmonary dysplasia in preterm infants // Pediatr. Infect. Dis. J. 2013. Vol. 32, N 8. P. 898-904.
17. Sampath V., Garland J.S., Le M. et al. A TLR5 (g.1174C?>?T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia // Pediatr. Pulmonol. 2011. Vol. 47. P. 460-468.
18. Hilgendorff A., Heidinger K., Pfeiffer A. et al. Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants // Genes Immunity. 2007. Vol. 8, N 8. P. 671-677.
19. Rova M., Haataja R., Marttila R. et al. Data mining and multiparameter analysis of lung surfactant protein genes in bronchopulmonary dysplasia // Hum. Mol. Genet. 2004. Vol. 13, N 11. P. 1095-1104.
20. Hilgendorff A., Heidinger K., Bohnert A. et al. Association of polymorphisms in the human surfactant protein-D (SFTPD) gene and postnatal pulmonary adaptation in the preterm infant // Acta Paediatr. 2009. Vol. 98, N 1. P. 112-117.
21. Rocha G., Proenca E., Areias A. et al. HLA and bronchopulmonary dysplasia susceptibility: A pilot study // Dis. Markers. 2011. Vol. 31, N 4. P. 199-203.
22. Ахмадеева Э.Н., Панов П.В., Панова Л.Д., Куликова С.Н. Характеристика генов главного комплекса гистосовместимости и перинатального анамнеза у недоношенных с бронхолегочной дисплазией // Вестн. соврем. клин. мед. 2013. Т. 6, № 6. С. 14-19.
23. Vannemreddy P., Notarianni C., Yanamandra K. et al. Is an endothelial nitric oxide synthase gene mutation a risk factor in the origin of intraventricular hemorrhage? // Neurosurg. Focus. 2010. Vol. 28, N 1. P. 11.
24. Derzbach L., Bokodi G., Treszl A. et al. Selectin polymorphisms and perinatal morbidity in low-birthweight infants // Acta Paediatr. 2006. Vol. 95, N 10. P. 1213-1217.
25. Kumral A., Tuzun F., Yesilirmak D.C. et al. Genetic basis of apnoea of prematurity and caffeine treatment response: role of adenosine receptor polymorphisms: Genetic basis of apnoea of prematurity // Acta Paediatr. 2012. Vol. 101, N 7. P. 299-303.
26. Haas D.M., Dantzer J., Lehmann A.S. et al. The impact of glucocorticoid polymorphisms on markers of neonatal respiratory disease following antenatal betamethasone administration // Am. J. Obstet. Gynecol. 2013. Vol. 208, N 3. P. 215. e1-e6.
27. Hadchouel A., Durrmeyer X., Bouzigon E. et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia // Am. J. Respir. Crit. Care Med. 2011. Vol. 184. P. 1164-1170.
28. Ali S., Hirschfeld A.F., Mayer M.L. et al. Functional genetic variation in NFKBIA and susceptibility to childhood asthma, bronchiolitis, and bronchopulmonary dysplasia // J. Immunol. 2013. Vol. 190, N 8. P. 3949-3958.
29. Kazzi S.N.J., Quasney M.W. Deletion allele of angiotensinconverting enzyme is associated with increased risk and severity of bronchopulmonary dysplasia // J. Pediatr. 2005. Vol. 147. P. 818-822.
30. Ozdemir A., Brown M.A., Morgan W.J. Markers and mediators of inflammation in neonatal lung disease // Pediatr. Pulmonol. 1997. Vol. 23. P. 292-306.
31. Goodman R.B., Pugin J., Lee J.S., Matthay M.A. Cytokine-mediated inflammation in acute lung injury // Cytokine Growth Factor Rev. 2003. Vol. 14. P. 523-535.
32. Belperio J.A., Keane M.P., Lynch J.P. 3rd, Strieter R.M. The role of cytokines during the pathogenesis of ventilator-associated and ventilator-induced lung injury // Semin. Respir. Crit. Care Med. 2006. Vol. 27. P. 350-364.
33. Strieter R.M., Belperio J.A., Keane M.P. Cytokines in innate host defense in the lung // J. Clin. Invest. 2002. Vol. 109. P. 699-705.
34. Kotecha S., Wilson L., Wangoo A. et al. Increase in interleukin (IL)-1 beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity // Pediatr. Res. 1996. Vol. 40. P. 250-256.
35. Baier R.J., Majid A., Parupia H. et al. CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia // Pediatr. Pulmonol. 2004. Vol. 37. P. 137-148.
36. Vento G., Capoluongo E., Matassa P.G. et al. Serum levels of seven cytokines in premature ventilated newborns: correlations with old and new forms of bronchopulmonary dysplasia // Intensive Care Med. 2006. Vol. 3. P. 723-730.
37. Viscardi R.M., Muhumuza C.K., Rodriguez A. et al. Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants // Pediatr. Res. 2004. Vol. 55. P. 1009-1017.
38. Ambalavanan N., Carlo W.A., D’Angio C.T. et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants // Pediatrics. 2009. Vol. 123, N 4. P. 1132-1141.
39. Lucey D.R., Clerici M., Shearer G.M. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases // Clin. Microbiol. Rev. 1996. Vol. 9. P. 532-562.
40. Gasparoni A., Ciardelli L., Avanzini A. et al. Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults // Biol. Neonate. 2003. Vol. 84. P. 297-303.
41. Kotecha S., Chan B., Azam N. et al. Increase in interleukin-8 and soluble intercellular adhesion molecule-1 in bronchoalveolar lavage fluid from premature infants who develop chronic lung disease // Arch. Dis. Child. Fetal Neonatal Ed. 1995. Vol. 72. P. 90-96.
42. Rozynski H.J. Bronchoalveolar interleukin-1β in infants on day 1 of life // South. Med. J. 1994. Vol. 87. P. 991-996.
43. Rindfleisch M.S., Hasday J.D., Taciak V. et al. Potential role of interleukin-1 in the development of bronchopulmonary dysplasia // J. Interferon Cytokine Res. 1996. Vol. 16. P. 365-373.
44. Murch S.H., MacDonald T.T., Wood C.B. et al. Tumour necrosis factor in the bronchoalveolar secretions of infants with the respiratory distress syndrome and the effect of dexamethasone treatment // Thorax. 1992. Vol. 47. P. 44-47.
45. Kovacs E.J., DiPietro L.A. Fibrogenic cytokines and connective tissue production // FASEB J. 1994. Vol. 8. P. 854-861.
46. Bagchi A., Viscardi R.M., Taciak V. et al. Increased activity of interleukin-6 but not tumor necrosis factor-α in lung lavage of premature infants is associated with the development of bronchopulmonary dysplasia // Pediatr. Res. 1994. Vol. 36. P. 244-252.
47. Tan N.D., Davidson D. Comparative differences and combined effects of interleukin-8, leukotriene B4, and platelet-activating factor on neutrophil chemotaxis of the newborn // Pediatr. Res. 1995. Vol. 38. P. 11-16.
48. Murch S.H., Costeloe K., Klein N.J. et al. Early production of macrophage inflammatory protein-1α occurs in respiratory distress syndrome and is associated with poor outcome // Pediatr. Res. 1996. Vol. 40. P. 490-497.
49. Kazzi S.N.J., Kim U.O. et al. Polymorphism of tumor necrosis factor-α and risk and severity of bronchopulmonary dysplasia among very low birth weight infants // Pediatrics. 2004. Vol. 114, N 2. P. 243-248.
50. Strassberg S.S., Cristea I.A., Qian D., Parton L.A. Single nucleotide polymorphisms of tumor necrosis factor-alpha and the susceptibility to bronchopulmonary dysplasia // Pediatr. Pulmonol. 2007. Vol. 42, N 1. P. 29-36.
51. Kazzi S.N.J., Tromp G., Quasney M.W., Buhimschi I.A. Haplotypes of tumor necrosis factor gene and tracheal aspirate fluid levels of tumor necrosis factor-alpha in preterm infants // Pediatr. Res. 2008. Vol. 64, N 2. P. 165-170.
52. Chauhan M., Bombell S., McGuire W. et al. Tumour necrosis factor (-308A) polymorphism in very preterm infants with bronchopulmonary dysplasia: a meta-analysis // Arch. Dis. Child. Fetal Neonatal Ed. 2009. Vol. 94. P. 257-259.
53. Кетлинский С. А., Симбирцев А. С. Цитокины. СПб. : Фолиант, 2008. С. 369-382.
54. Jones C.A., Cayabyab R.G., Kwong K.Y. et al. Undetectable interleukin (IL)-10 and persistent IL-8 expression early in hyaline membrane disease: a possible developmental basis for the predisposition to chronic lung inflammation in preterm newborns // Pediatr. Res. 1996. Vol. 39. P. 966-975.
55. Usuda T., Kobayashi T., Sakakibara S. et al. Interleukin-6 polymorphism and bronchopulmonary dysplasia risk in very low-birthweight infants // Pediatr. Int. 2012. Vol. 54. P. 471-475.
56. Krueger M., Heinzmann A., Mailaparambil B. et al. Polymorphisms of interleukin 18 in the genetics of preterm birth and bronchopulmonary dysplasia // Arch. Dis. Child. Fetal Neonatal Ed. 2011. Vol. 96, N 4. P. 299- 300.
57. Lin H.C., Su B.H., Chang J.S. et al. Nonassociation of interleukin 4 intron 3 and 590 promoter polymorphisms with bronchopulmonary dysplasia for ventilated preterm infants // Biol. Neonate. 2005. Vol. 87, N 3. P. 181-186.
58. Yanamandra K., Boggs P. et al. Interleukin-10-1082 G/A polymorphism and risk of death or bronchopulmonary dysplasia in ventilated very low birth weight infants // Pediatr. Pulmonol. 2005. Vol. 39. P. 426-432.
59. Thebaud B. Angiogenesis in lung development, injury and repair: Implications for chronic lung disease of prematurity // Neonatology. 2007. Vol. 91. P. 291-297.
60. Thebaud B., Abman S.H. Bronchopulmonary dysplasia: Where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease // Am. J. Respir. Crit. Care Med. 2007. Vol. 175. P. 978-985.
61. Jakkula M., Le Cras T.D., Gebb S. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung // Am. J. Physiol. 2000. Vol. 279. P. 600-607.
62. Thebaud B., Ladha F., Michelakis E.D. et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: Evidence that angiogenesis participates in alveolarization // Circulation. 2005. Vol. 112. P. 2477-2486.
63. Bhatt A.J., Pryhuber G.S., Huyck H. et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia // Am. J. Respir. Crit. Care Med. 2001. Vol. 164. P. 1971-1980.
64. Kotecha S., Wangoo A., Silverman M. et al. Increase in the concentration of transforming growth factor β1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity // J. Pediatr. 1996. Vol. 128. P. 464-469.
65. Lecart C., Cayabyab R., Buckley S. et al. Bioactive transforming growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation // Biol. Neonate. 2000. Vol. 77. P. 217-223.
66. Gauldie J., Galt T., Bonniaud P. et al. Transfer of the active form of transforming growth factor-β1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia // Am. J. Pathol. 2003. Vol. 163, N 6. P. 2575-2584.
67. Calandra T., Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity // Nat. Rev. Immunol. 2003. Vol. 3. P. 791-800.
68. Kim H.R., Park M.K., Cho M.L. et al. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis // J. Rheumatol. 2007. Vol. 34. P. 927-936
69. Xu X., Wang B., Ye C. et al. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer // Cancer Lett. 2008. Vol. 261. P. 147-157.
70. Donnelly S.C., Haslett C., Reid P.T. et al. Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome // Nat. Med. 1997. Vol. 3. P. 320-323.
71. Lai K.N., Leung J.C., Metz C.N. et al. Role for macrophage migration inhibitory factor in acute respiratory distress syndrome // J. Pathol. 2003. Vol. 199. P. 496-508.
72. Prencipe G., Аuriti С., Inglese R. et al. A Polymorphism in the macrophage migration inhibitory factor promoter is associated with bronchopulmonary dysplasia // Pediatr. Res. 2011. Vol. 69, N 2. P. 142-147.
73. Warburton D., Bellusci S. The molecular genetics of lung morphogenesis and injury repair // Paediatr. Respir. Rev. 2004. Vol. 5. P. 283-287.
74. Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease // Biol. Pharm. Bull. 2007. Vol. 30. P. 1819-1825.
75. Powell P.P., Wang C.C., Horinouchi H. et al. Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung // Am. J. Respir. Cell Mol. Biol. 1998. Vol. 19. P. 563-572.
76. Rich C.B., Fontanilla M.R., Nugent M., Foster J.A. Basic fibroblast growth factor decreases elastin gene transcription through an AP1/cAMPresponse element hybrid site in the distal promoter // J. Biol. Chem. 1999. Vol. 274. P. 33433-33439.
77. Feres-Filho E.J., Menassa G.B., Trackman P.C. Regulation of lysyl oxidase by basic fibroblast growth factor in osteoblastic MC3T3-E1 cells // J. Biol. Chem. 1996. Vol. 271. P. 6411-6416.
78. Aaronson S.A., Bottaro D.P., Miki T. et al. Keratinocyte growth factor. A fibroblast growth factor family member with unusual target cell specificity // Ann. N.Y. Acad. Sci. 1991. Vol. 638. P. 62-77.
79. Orr-Urtreger A., Bedford M.T., Burakova T. et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2) // Dev. Biol. 1993. Vol. 158. P. 475-486.
80. Давыдова И.В., Яцык Г.В., Бершова Т.В. и др. Матриксные металлопротеиназы как маркеры формирования бронхолегочной дисплазии у детей // Пульмонология. 2009. № 4. С. 80-84.
81. Hadchouel A., Decobert F., Franco-Montoya M.-L. et al. Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: identification of MMP16 as a new player in lung development // PLoS One. 2008. Vol. 3, N 9. Article ID e3188.
82. Buhimschi I.A., Buhimschi C.S., Pupkin M., Weiner C.P. Beneficial impact of term labor: nonenzymatic antioxidant reserve in the human fetus // Am. J. Obstet. Gynecol. 2003. Vol. 189. P. 181-188.
83. Frank L. Development of the antioxidant defenses in fetal life // Semin. Fetal Neonatal Med. 1998. Vol. 3. P. 173-182.
84. Frank L. Antioxidants, nutrition, and bronchopulmonary dysplasia // Clin. Perinatol. 1992. Vol. 19. P. 541-562.
85. Saugstad O.D. Bronchopulmonary dysplasia and oxidative stress: are we closer to an understanding of the pathogenesis of BPD? // Acta Paediatr. 1997. Vol. 86. P. 1277-1282.
86. Saugstad O.D.: Oxidative stress in the newborn - a 30 years perspective // Biol. Neonate. 2005. Vol. 88, N 3. P. 228-236.
87. Varsila E., Pesonen E., Andersson S. Early protein oxidation in the neonatal lung is related to development of chronic lung disease // Acta Paediatr. 1995. Vol. 84. P. 1296-1299.
88. Varsila E., Pitkanen O., Hallman M., Andersson S. Immaturitydependent free radical activity in premature infants // Pediatr. Res. 1994. Vol. 36. P. 55-59.
89. Johnston C.J., Wright T.W., Reed C.K., Finkelstein J.N. Comparison of adult and newborn pulmonary cytokine mRNA expression after hyperoxia // Exp. Lung Res. 1997. Vol. 23. P. 537-552.
90. Saugstad O.D. Bronchopumonary dysplasia-oxidative stress and antioxidants // Semin. Neonatol. 2003. Vol. 8. P. 39-49.
91. Dani C., Cecchi A., Bertini G. Role of oxidative stress as physiopathologic factor in the preterm infant // Minerva Pediatr. 2004. Vol. 56. P. 381-394.
92. Poggi C., Giusti B. et al. Genetic polymorphisms of antioxidant enzymes in preterm infants // J. Matern. Fetal Neonatal Med. 2012. Vol. 25, N 4. P. 131-134.
93. Karagianni P., Rallis D., Fidani L. Glutathion-S-Transferase P1 polymorphisms association with broncopulmonary dysplasia in preterm infants // Hippokratia. 2013. Vol. 17, N 4. P. 363-367.
94. Павлинова Е.Б. Анализ полиморфизма генов ферментов антиокисдантной системы у недоношенных новорожденных из группы риска по формированию бронхолегочной дисплазии // Вопр. диагностики в педиатрии. 2011. Т. 3, № 5. С. 14-19.
95. Clark R., Kupper T. Old meets new: the interaction between innate and adaptive immunity // J. Invest. Dermatol. 2005. Vol. 125, N 4. P. 629-637.
96. Wakefield D., Gray P., Chang J. et al. The role of PAMPs and DAMPs in the pathogenesis of acute and recurrent anterior uveitis // Br. J. Ophthalmol. 2010. Vol. 94, N 3. P. 271-274.
97. Trinchieri G., Sher A. Cooperation of Toll-like receptor signals in innate immune defense // Nat. Rev. Immunol. 2007. Vol. 7, N 3. P. 179-190.
98. Akira S. Pathogen recognition by innate immunity and its signaling // Proc. Jpn Acad. Ser. B. Phys. Biol. Sci. 2009. Vol. 85, N 4. P. 143-156.
99. Blasius A.L., Beutler B. Intracellular Toll-like receptors // Immunity. 2010. Vol. 32, N 3. P. 305-315.
100. Beutler B. TLR4 as the mammalian endotoxin sensor // Curr. Top. Microbiol. Immunol. 2002. Vol. 270. P. 109-120.
101. Roach J.C., Glusman G., Rowen L. et al. The evolution of vertebrate Toll-like receptors // Proc. Natl Acad. Sci. USA. 2005. Vol. 102, N 27. P. 9577-9582.
102. Kilpatrick D.C. Mannan-binding lectin: Clinical significance and applications // Biochim. Biophys. Acta. 2002. Vol. 1572. P. 401-413.
103. LeVine A.M., Jobe A.H. The Surfactant System // Kendig’s Disorders of the Pespiratory Tract in Children. 7th ed. Elsevier, 2006. P. 17-22.
104. Whitsett J.A., Weaver T.E. Hydrophobic surfactant proteins in lung function and disease // N. Engl. J. Med. 2002. Vol. 347. P. 2141- 2148.
105. Weaver T.E., Conkright J.J. Function of surfactant proteins B and C // Annu. Rev. Physiol. 2001. Vol. 63. P. 555-578.
106. Rudiger M., Kolleck I., Putz G. et al. Plasmalogens effectively reduce the surface tension of surfactant-like phospholipid mixtures // Am. J. Physiol. Lung Cell Mol. Physiol. 1998. Vol. 274. P. 143-148.
107. Ballard P.L., Gonzales L.W., Godinez R.I. et al. Surfactant composition and function in a primate model of infant chronic lung disease: effects of inhaled nitric oxide // Pediatr. Res. 2006. Vol. 59, N 1. P. 157-162.
108. Овсянников Д.Ю., Беляшова М.А., Крушельницкий А. А. Врожденный дефицит белков сурфактанта // Неонатология: новости, мнения, обучение. 2014. Т. 1, № 3. С. 80-90.
109. Curstedt T., Johansson J., Persson P. et al. Hydrophobic surfactantassociated polypeptides. SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups // Proc. Natl Acad. Sci. USA. 1990. Vol. 87. P. 2985-2989.
110. Тюменцева Е.С., Петрова И.В. Анализ полиморфизма генов, ассоциированных с развитием у детей комбинированного аллергического поражения различных органов и систем // Вопр. диагностики в педиатрии. 2011. Т. 3, № 3. С. 21-26.
111. Абатуров А.Е. Опсонирующая сеть протеинов системы неспецифической защиты респираторного тракта. Коллектины: белки сурфактанта (ч. 2) // Здоровье ребенка. 2011. № 2. С. 125-129.
112. Беляева И.А., Давыдова И.В. Роль генетических факторов в формировании бронхолегочной дисплазии у детей // Вопр. диагностики в педиатрии. 2012. Т. 4. № 5. С. 5-9.
113. Ryckman K.K., Dagle J.M., Kelsey K. et al. Genetic associations of surfactant protein D and angiotensin-converting enzyme with lung disease in preterm neonates // J. Perinatol. 2012. Vol. 32, N 5. P. 349-355.
114. Pavlovic J., Papagaroufalis C., Xanthou M. et al. Genetic variants of surfactant proteins A, B, C, and D in bronchopulmonary dysplasia // Dis. Markers. 2006. Vol. 22, N 5-6. P. 277-291.
115. Cai B., Chang L., Li W. Association of surfactant protein B gene polymorphisms (C/A-18, C/T1580, intron 4 and A/G9306) and haplotypes with bronchopulmonary dysplasia in Chinese Han population // J. Huazhong Univ. Sci. Technol. Med. Sci. 2013. Vol. 33, N 3. P. 323-328.
116. Makri V., Hospes B., Stoll-Becker S., et al. Polymorphisms of surfactant protein B encoding gene: modifiers of the course of neonatal respiratory distress syndrome? // Eur. J. Pediatr. 2002. Vol. 161, N 11. P. 604-608.
117. Lahti M., Marttila R., Hallman M. Surfactant protein C gene variation in the Finnish population - association with perinatal respiratory disease // Eur. J. Hum. Genet. 2004. Vol. 12, N 4. P. 312-320.
118. Weber B., Borkhardt A., Stoll-Becker S. et al. Polymorphisms of surfactant protein A genes and the risk of bronchopulmonary dysplasia in preterm infants // Turk. J. Pediatr. 2000. Vol. 42, N 3. P. 181-185.
119. Nepom G.T. The major histocompatibility complex // Harrison’s Principles of Internal Medicine. 17th ed. / A.S. Fauci, E. Braunwald, D.L. Kasper et al. N.Y. : The McGraw-Hill Companies, 2008. P. 2045-2053.
120. Clark D.A., Pincus L.G., Oliphant M. et al. HLA-A2 and chronic lung disease in neonates // JAMA. 1982. Vol. 248. P. 1868.
121. Панова Л.Д., Ахмадеева Э.Н., Панов П.В. и др. Факторы риска формирования бронхолегочной диспалзии у недоношенных младенцев с респираторной патологией // Материалы I Международного конгресса по перинатальной медицине. М., 2011. 129 с.
122. Perkins N.D. Integrating cell-signalling pathways with NF-κB and IKK function // Nat. Rev. Mol. Cell Biol. 2007. Vol. 8, N 1. P. 49-62.
123. Hoffmann A., Natoli G., Ghosh G. Transcriptional regulation via the NF-κB signaling module // Oncogene. 2006. Vol. 25, N 51. P. 6706-6716.
124. Chen L.F., Greene W.C. Shaping the nuclear action of NF-κB // Nat. Rev. Mol. Cell Biol. 2004. Vol. 5, N 5. P. 392-401.
125. Saugstad O.D. Update on oxygen radical disease in neonatology // Curr. Opin. Obstet. Gynecol. 2001. Vol. 13, N 2. P. 147-153.
126. Bourbia A., Cruz M.A., Rozycki H.J. NF-κB in tracheal lavage fluid from intubated premature infants: association with inflammation, oxygen, and outcome // Arch. Dis. Child. Fetal Neonatal Ed. 2006. Vol. 91, N 1. P. 36-39.
127. Cao L., Liu C., Cai B., et al. Nuclear factor-κ B expression in alveolar macrophages of mechanically ventilated neonates with respiratory distress syndrome // Biol. Neonate. 2004. Vol. 86, N 2. P. 116-123.
128. Cheah F.C., Winterbourn C.C., Darlow B.A. et al. Nuclear factor κB activation in pulmonary leukocytes from infants with hyaline membrane disease: associations with chorioamnionitis and Ureaplasma urealyticum colonization // Pediatr. Res. 2005. Vol. 57, N 5. Pt 1. P. 616-623.
129. Haddad J.J., Land S.C., Tarnow-Mordi W.O. et al. Immunopharmacological potential of selective phosphodiesterase inhibition. II. Evidence for the involvement of an inhibitory-κB/nuclear factor-κB-sensitive pathway in alveolar epithelial cells // J. Pharmacol. Exp. Ther. 2002. Vol. 300, N 2. P. 567-576.
130. Aghai Z., Kumar S., Farhath S. et al. Dexamethasone suppresses expression of nuclear factor-κB in the cells of tracheobronchial lavage fluid in premature neonates with respiratory distress // Pediatr. Res. 2006. Vol. 59, N 6. P. 811-815.
131. Aghai Z.H., Kode A., Saslow J.G. et al. Azithromycin suppresses activation of nuclear factor-κ B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants // Pediatr. Res. 2007. Vol. 62, N 4. P. 483-488.
132. Wright C.J., Agboke F., Chen F. et al. Nitric oxide inhibits hyperoxia-induced NF-κB activation in neonatal pulmonary microvascular endothelial cells // Pediatr. Res. 2010. Vol. 68, N 6. P. 484-489.
133. Aicher A., Heeschen C., Mildner-Rihm C. et al.: Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells // Nat. Med. 2003. Vol. 9. P. 1370.
134. Young S.L., Evans K., Eu J.P. Nitric oxide modulates branching morphogenesis in fetal rat lung explants // Am. J. Physiol. Lung Cell Mol. Physiol. 2002. Vol. 282. P. 379.
135. Ziche M., Morbidelli L., Choudhuri R. et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis // J. Clin. Invest. 1997. Vol. 99. P. 2625.
136. Vannahme C., Schubel S., Herud M. et al. Molecular cloning of testican-2: defining a novel calcium-binding proteoglycan family expressed in brain // J. Neurochem. 1999. Vol. 73. P. 12-20.
137. Schnepp A., Komp Lindgren P., Hulsmann H. et al. Mouse testican-2. Expression, glycosylation, and effects on neurite outgrowth // J. Biol. Chem. 2005. Vol. 280. P. 11274-11280.
138. Boucherat O., Franco-Montoya M.L., Thibault C. et al. Gene expression profiling in lung fibroblasts reveals new players in alveolarization // Physiol. Genomics. 2007. Vol. 32. P. 128-141.
139. Nakada M., Yamada A., Takino T. et al. Suppression of membranetype 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gene product // Cancer Res. 2001. Vol. 61. P. 8896-8902.
140. Atkinson J.J., Holmbeck K., Yamada S. et al. Membrane-type 1 matrix metalloproteinase is required for normal alveolar development // Dev. Dyn. 2005. Vol. 232. P. 1079-1090.
141. Boucherat O., Bourbon J.R., Barlier-Mur A.M. et al. Differential expression of matrix metalloproteinases and inhibitors in developing rat lung mesenchymal and epithelial cells // Pediatr. Res. 2007. Vol. 62. P. 20-25.
142. Peach M. Renin-angiotensin system: biochemistry and mechanism of action // Physiol. Rev. 1977. Vol. 57. P. 313-370.
143. Reid I.A., Morris B.J., Ganong W.F. The renin-angiotensin system // Annu. Rev. Physiol. 1978. Vol. 40. P. 377-410.
144. Rohatgi P.K. Serum angiotensin converting enzyme in pulmonary disease // Lung. 1982. Vol. 160. P. 287-301.
145. Campbell D.J., Habener J. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat // J. Clin. Invest. 1986. Vol. 78. P. 31-39.
146. Deschepper C.F., Mellon S.H., Cumin F. et al. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat // Proc. Natl Acad. Sci. USA. 1986. Vol. 83. P. 7552-7556.
147. Ruiz-Ortega M., Ruperez M., Lorenzo O. et al. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney // Kidney Int. Suppl. 2002. Vol. 82. P. 12-22.
148. Guba M., Steinbauer M., Buchner M. et al. Differential effects of short-term ace-and AT1-receptor inhibition on postischemic injury and leukocyte adherence in vivo and in vitro // Shock. 2000. Vol. 13. P. 190-196.
149. Brull D.J., Sanders J., Rumley A. et al. Impact of angiotensin converting enzyme inhibition on post-coronary artery bypass interleukin 6 release // Heart. 2002. Vol. 87. P. 252-255.
150. Morrell N.W., Atochina E.N., Morris K.G. et al. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension // J. Clin. Invest. 1995. Vol. 96. P. 1823-1833.
151. Овсянников Д.Ю., Зайцева Н.О., Шокин А.А. и др. Осложнения бронхолегочной дисплазии: легочная гипертензия и легочное сердце // Неонатология: новости, мнения, обучение. 2014. Т. 1, № 4. С 5-13.
152. Spiegler J., Gilhaus A., Konig I.R. et al. Polymorphisms in the Renin-Angiotensin system and outcome of very-low-birth-weight infants // Neonatology. 2010. Vol. 97, N 1. P. 1.
153. Ince D.A., Atac F.B., Ozkiraz S. et al. The role of plasminogen activator inhibitor-1 and angiotensin-converting enzyme gene polymorphisms in bronchopulmonary dysplasia // Gen. Test. Mol. Biomarkers. 2010. Vol. 14, N 5. P. 643-647.
154. Plunkett A., Agbeko R.S., Li K. et al. Angiotensin-converting enzyme D allele does not influence susceptibility to acute hypoxic respiratory failure in children // Intensive Care Med. 2008. Vol. 34, N 12. P. 2279-2283.
155. Yanamandra K., Loggins J., Baier R.J. The Angiotensin converting enzyme insertion/deletion polymorphism is not associated with an increased risk of death or bronchopulmonary dysplasia in ventilated very low birth weight infants // BMC Pediatrics. 2004. Vol. 4, N 1. P. 26.
156. Raby B.A., Van Steen K., Lasky-Su J., et al. Importin-13 genetic variation is associated with improved airway responsiveness in childhood asthma // Respir. Res. 2009. Vol. 20, N 10. P. 67.
157. Cronstein B.N., Levin R.I., Philips M. et al. Neutrophil adherence to endothelium is enhanced via adenosine a1 receptors and inhibited via adenosine a2 receptors // J. Immunol. 1992. Vol. 148. P. 2201-2206.
158. Kim S.H., Kim Y.K., Park H.W. et al. Adenosine deaminase and adenosine receptor polymorphisms in aspirin-intolerant asthma // Respir. Med. 2009. Vol. 103. P. 356-363.
159. Nadeem A., Fan M., Ansari H.R. et al. Enhanced airway reactivity and inflammation in a2a adenosine receptor-deficient allergic mice // Am. J. Physiol. Lung Cell Mol. Physiol. 2007. Vol. 292. P. 1335-1344.
160. Fozard J.R., Ellis K.M., Villela Dantas M.F. et al. Effects of cgs 21680, a selective adenosine a2a receptor agonist, on allergic airways inflammation in the rat // Eur. J. Pharmacol. 2002. Vol. 438. P. 183-188.
161. Mustafa S.J., Nadeem A., Fan M. et al. Effect of a specific and selective a(2b) adenosine receptor antagonist on adenosine agonist amp and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma // J. Pharmacol. Exp. Ther. 2007. Vol. 320. P. 1246-1251.
162. Fitzgerald K.A., Palsson-McDermott E.M., Bowie A.G. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction // Nature. 2001. Vol. 413, N 6851. P. 78-83.
163. Kansas G.S. Selectins and their ligands: current concepts and controversies // Blood. 1996. Vol. 88. P. 3259-3287.
164. Kim S.K., Keeney S.E., Alpard S.K., Schmalstieg F.C. Comparison of L-selectin and CD11b on neutrophils of adults and neonates during the first month of life // Pediatr. Res. 2003. Vol. 53. P. 132-136.
165. Kim B.I., Lee H.E., Choi C.W. et al. Increase in cord blood soluble E-selectin and tracheal aspirate neutrophils at birth and the development of new bronchopulmonary dysplasia // J. Perinat. Med. 2004. Vol. 32. P. 282-287.
166. Lorant D.E., Li W., Tabatabaei N. et al. P-selectin expression by endothelial cells is decreased in neonatal rats and human premature infants // Blood. 1999. Vol. 94. P. 600-609.